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Abstract. In this note we construct unbounded families of minimal surfaces of general type whose
canonical map has a degree of 4 such that the limits of the slopes 𝐾2/𝜒 assume countably many
different values in the closed interval

[
6 + 2

3 , 8
]
.

Introduction

In this paper a surface is a compact complex manifold of dimension 2. An unbounded
family of surfaces is a sequence of surfaces 𝑆𝑛 with an arbitrarily large Euler characteristic
𝜒(O𝑆𝑛 ). More precisely, our unbounded families are sequence of surfaces 𝑆𝑛 such that
lim𝑛→∞ 𝜒(O𝑆𝑛 ) = +∞.

It is well known since the pioneering work of Beauville [3] and a Theorem of Xiao
Gang [17] that the degree of the canonical map of a surface 𝑆, if we assume a large enough
Euler characteristic, is bounded from above by 8. Recall that the degree of the canonical
map is a birational invariant, so we can without loss of generality assume that 𝑆 is minimal.

We address the reader to the beautiful survey of M. Mendes Lopes and R. Pardini [14]
on the subject. We read from there, among other things, examples of unbounded sequences
of minimal surfaces whose canonical map has a degree of 𝛿 for every 𝛿 ∈ {2, 4, 6, 8}.

Recall that the slope ` of a minimal surface 𝑆 is defined as `(𝑆) := 𝐾2
𝑆

𝜒 (O𝑆 ) . By the
Bogomolov-Miyaoka-Yau inequality `(𝑆) ≤ 9. By the above mentioned results it easily
follows that for any unbounded family 𝑆𝑛 of minimal surfaces whose canonical map has a
degree of 𝛿, lim inf `(𝑆𝑛) ≥ 𝛿. This raises the question of investigating, for all 𝛿, the set
of the accumulation points of the slopes of unbounded families of minimal surfaces whose
canonical map has a degree of 𝛿. Compare [14]*Question 5.6.

We know only three constructions of unbounded families of minimal surfaces whose
canonical map has a degree of 4.

The first, mentioned in [14], is obtained by taking the product of two hyperelliptic
curves. All these surfaces have slope 8.

The second, see [4, Remark 3], is a construction as Galois cover of P1 × P1 with Galois
group (Z/2Z)3; they also have lim ` (𝑆𝑛) equal to 8.
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The last, constructed by F. J. Gallego and G. P. Purnaprajna, give unbounded families
with lim ` (𝑆𝑛) equal either to 8 or to 4, see the last column of [11, Table at page 5491].

Inspired by certain constructions of 𝐾3 surfaces in [10], we show that lim ` (𝑆𝑛), when
𝑆𝑛 is an unbounded families of minimal surfaces whose canonical map has a degree of 4,
may assume infinitely many different values. More precisely

Theorem. There are countably many unbounded sequences 𝑆𝑛 of surfaces of general type
that have canonical map of degree 4 such that lim𝑛→∞ ` (𝑆𝑛) assumes pairwise distinct
values in the range

[
6 + 2

3 , 8
]
.

All these surfaces are product-quotient surfaces. The product-quotient surfaces have
been introduced by the second author, I. Bauer, F. Catanese and F. Grunewald in [2] (com-
pare also [7], [1], [5]). Their canonical map was studied, in the special case of the surfaces
isogenous to a product, in [8]. To our knowledge they were used first for constructing sur-
faces with canonical map of high degree in [12].

Notation

For each real number 𝑧, let ⌈𝑧⌉ be the smallest integer greater or equal than 𝑧.
For each pair of integers 𝑧, 𝑛 ∈ Nwe denote by [𝑧]𝑛 the unique integer, 0 ≤ [𝑧]𝑛 ≤ 𝑛 − 1,

such that 𝑧 − [𝑧]𝑛 is divisible by 𝑛.
We say that a point of a complex analytic variety is a singular point of type 𝑝

𝑞
, with 𝑝 ∈

Z \ {0}, 𝑞 ∈ N \ {0}, gcd(𝑝, 𝑞) = 1, if one of its neighbourhoods is analytically isomorphic
to the quotient of a neighbourhood of the origin of C2 by the cyclic group generated by the
automorphism (𝑥, 𝑦) ↦→ (𝑒

2𝜋𝑖
𝑞 𝑥, 𝑒

𝑝 2𝜋𝑖
𝑞 𝑦). These singularities are most commonly denoted

as cyclic quotient singularities of type 1
𝑞
(1, 𝑟) in the literature, where 𝑟 is the reminder of

the division of 𝑝 by 𝑞.
We say that a variety has basket of singularities 𝑎1

𝑝1
𝑞1

+ 𝑎2
𝑝2
𝑞2

+ · · · + 𝑎𝑟 𝑝𝑟𝑞𝑟 if its singu-
lar locus is finite and can be partitioned in 𝑟 subsets 𝑆1, . . . , 𝑆𝑟 of respective cardinality
𝑎1, . . . , 𝑎𝑟 such that each point in 𝑆 𝑗 is a singularity of type 𝑝 𝑗

𝑞 𝑗
.

1. Generalized Wiman Curves

By a classical result of Harvey and Wiman ([13,18]) an automorphism of a curve of genus
𝑔 at least 2 has order at most 4𝑔 + 2. Moreover, there is exactly one curve of genus 𝑔 with
an automorphism of order 4𝑔 + 2 for each integer 𝑔 ≥ 2, usually referred in literature as
the Wiman curve of genus 𝑔.

Definition 1.1 (Generalized Wiman curves). Consider two positive integers 𝑛, 𝑑 ≥ 1.
A generalized Wiman curve of type 𝑛, 𝑑 is a curve in the weighted projective space

P
(
1, 1,

⌈
𝑛𝑑
2
⌉)

defined by an equation of the form

𝑦2 = 𝑥
[𝑛𝑑 ]2
0 𝑓 (𝑥𝑛0 , 𝑥

𝑛
1 )
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where 𝑓 is a homogenous polynomial of degree 𝑑 in the two variables 𝑥0, 𝑥1 without mul-
tiple roots such that neither 𝑥0 nor 𝑥1 divide 𝑓 .

Remark 1.2. The assumptions on the polynomial 𝑓 ensure that any generalized Wiman
curve is smooth.

By adjunction a generalized Wiman curve 𝐶 of type 𝑛, 𝑑 has genus 𝑔 =
⌈
𝑛𝑑
2
⌉
− 1. In

fact a basis of 𝐻0 (𝐶, 𝐾𝐶 ) is given by the monomials

𝑥
⌈ 𝑛𝑑

2 ⌉−2
0 , 𝑥

⌈ 𝑛𝑑
2 ⌉−3

0 𝑥1, . . . , 𝑥0𝑥
⌈ 𝑛𝑑

2 ⌉−3
1 , 𝑥

⌈ 𝑛𝑑
2 ⌉−2

1 (1.1)

A generalized Wiman curve of type 𝑛, 𝑑 has the following two natural commuting
automorphisms

] : (𝑥0, 𝑥1, 𝑦) ↦→ (𝑥0, 𝑥1,−𝑦) 𝜌 : (𝑥0, 𝑥1, 𝑦) ↦→ (𝑥0, 𝑒
2𝜋𝑖
𝑛 𝑥1, 𝑦)

of respective order 2 and 𝑛. This shows
(1) all generalized Wiman curves are hyperelliptic, ] being their hyperelliptic involu-

tion;
(2) a generalized Wiman curve of type 2𝑔 + 1, 1 is the Wiman curve of genus 𝑔.
Since ] is the hyperelliptic involution, ] acts on 𝐻0 (𝐶, 𝐾𝐶 ) as the multiplication by −1.

The points fixed by ] are the 2𝑔 + 2 points of the divisor 𝑦 = 0.

Definition 1.3. We will say that 𝜌 is the rotation of 𝐶.

We conclude this section by studying the action of the rotation.

Proposition 1.4. The action of 𝜌 on the locus 𝑥0𝑥1 ≠ 0 has all orbits of order 𝑛.
The divisor 𝑥1 = 0 is given by two points, both fixed by 𝜌.
If both 𝑛 and 𝑑 are odd, then the divisor 𝑥0 = 0 is given by one single point, fixed by 𝜌.

Else the divisor 𝑥0 = 0 is given by two distinct points, fixed by 𝜌 if 𝑑 is even and exchanged
by 𝜌 if 𝑑 is odd.

The monomials in (1.1) are eigenvalues for the induced action of 𝜌 on 𝐻0 (𝐶, 𝐾𝐶 ).
More precisely 𝜌 acts on them as

𝑥
⌈ 𝑛𝑑

2 ⌉−2−𝑎
0 𝑥𝑎1 ↦→ 𝑒 (𝑎+1) 2𝜋𝑖

𝑛 𝑥
⌈ 𝑛𝑑

2 ⌉−2−𝑎
0 𝑥𝑎1 (1.2)

Proof. The rotation lifts the automorphism of P1 = 𝐶/] acting as (𝑥0, 𝑥1) ↦→ (𝑥0, 𝑒
2𝜋𝑖
𝑛 𝑥1),

which fixes only the two points 𝑥0𝑥1 = 0, so the analogous statement holds for 𝜌.
By the definition of 𝑓 the point (𝑥0, 𝑥1) = (0,1) is a branching point of the hyperelliptic

2 : 1 map 𝐶 → P1 if and only if both 𝑛 and 𝑑 are odd, in which case the divisor 𝑥0 = 0
in 𝐶 is a single (double) point, that is therefore fixed by 𝜌. Else, if 𝑛𝑑 is even, 𝑥0 = 0 is
formed by two distinct points with homogeneous coordinates (𝑥0, 𝑥1, 𝑦) = (0, 1, ±�̄�0) for
some �̄�0 ≠ 0. These two points are either fixed or exchanged by 𝜌. By the properties of the
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weighted projective space they are fixed by 𝜌 if and only if
(
𝑒−

2𝜋𝑖
𝑛

) 𝑛𝑑
2
= 1. We conclude

the analysis of the divisor 𝑥0 = 0 by observing that the last equation is verified if and only
if 𝑑 is even.

Since the point (𝑥0, 𝑥1) = (1, 0) is not a branching point of the hyperelliptic map, the
divisor 𝑥1 = 0 is made by two distinct points with coordinates (𝑥0, 𝑥1, 𝑦) = (1, 0,±�̄�1) for
some �̄�1 ≠ 0, both obviously fixed by 𝜌.

The function 𝑧 := 𝑥1/𝑥0 is a local coordinate in both of then, on which 𝜌 acts as 𝑧 ↦→
𝑒

2𝜋𝑖
𝑛 𝑧. The adjunction formula maps a monomial 𝑥⌈

𝑛𝑑
2 ⌉−2−𝑎

0 𝑥𝑎1 to the form that locally
restricts to 𝑧𝑎𝑑𝑧 and therefore 𝜌 acts on it as the multiplication by 𝑒 (𝑎+1) 2𝜋𝑖

𝑛 .

2. Wiman product-quotient surfaces

Definition 2.1. For all integers 𝑛, 𝑑1, 𝑑2 and for all 1 ≤ 𝑘 ≤ 𝑛 − 1 with gcd(𝑘, 𝑛) = 1 we
define a Wiman product-quotient surface of type 𝑛, 𝑑1, 𝑑2 with shift 𝑘 to be the minimal
resolution 𝑆 of the singularities of its quotient model 𝑋 := (𝐶1 × 𝐶2)/𝐻 where
• 𝐶 𝑗 , 𝑗 = 1, 2 is a generalized Wiman curve of type 𝑛, 𝑑 𝑗 ;
• 𝐻 ⊂ Aut(𝐶1 × 𝐶2) is the cyclic subgroup of order 𝑛 generated by the automorphism

(𝑥, 𝑦) ↦→
(
𝜌1𝑥, 𝜌

𝑘
2 𝑦

)
.

where 𝜌 𝑗 is the rotation of 𝐶 𝑗 .

Denote the hyperelliptic involution of 𝐶 𝑗 by ] 𝑗 . Then Aut(𝐶1 × 𝐶2) contains a sub-
group of order 4 generated by (]1, 1) and (1, ]2). The corresponding quotient of 𝐶1 ×𝐶2 is
isomorphic to P1 × P1. Since this group commutes with 𝐻 and it intersects 𝐻 trivially, it
defines a subgroup 𝐾 � (Z/2Z)2 of Aut(𝑋). Note that 𝑋/𝐾 is dominated by P1 × P1 and
therefore it is rational.

Lemma 2.2. The canonical map of 𝑆 factors through the rational surface 𝑋/𝐾 .

Proof. By the Kuenneth formula

𝐻0 (𝐶1 × 𝐶2, 𝐾𝐶1×𝐶2 ) � 𝐻0 (𝐶1, 𝐾𝐶1 ) ⊗ 𝐻0 (𝐶2, 𝐾𝐶2 )

and then both involutions (]1, 1) and (1, ]2) act on 𝐻0 (𝐶1 × 𝐶2, 𝐾𝐶1×𝐶2 ) as the multiplic-
ation by −1. Since by Freitag Theorem [9, Satz 1] the pull-back map sends 𝐻0 (𝑆, 𝐾𝑆) =
𝐻0 (𝑋, 𝐾𝑋) isomorphically onto the invariant subspace 𝐻0 (𝐶1 × 𝐶2, 𝐾𝐶1×𝐶2 )𝐻 , it follows
that all elements of 𝐾 act on 𝐻0 (𝑆, 𝐾𝑆) = 𝐻0 (𝑋, 𝐾𝑋) as a multiple of the identity.

This implies that 𝐻0 (𝑆, 𝐾𝑆) cannot separate two points in the same orbit by the action
of 𝐾 .
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In the “degenerate” case 𝑛 = 1, 𝑆 = 𝑋 is the product of the two hyperelliptic curves 𝐶1
and 𝐶2. Assuming 𝑑1, 𝑑2 ≥ 5 (to have genera at least 2) we find an unbounded family of
surfaces with canonical map of degree 4 as those mentioned in [14].

The degree of the canonical map remains in fact 4 also for bigger 𝑛.

Theorem 2.3. Let 𝑆 be a Wiman product-quotient surface of type 𝑛, 𝑑1, 𝑑2 and assume
𝑛 ≥ 2.

(1) If 𝑑1, 𝑑2 ≥ 3, then 𝐾𝑆 is nef.
(2) If 𝑑1 ≥ 4, 𝑑2 ≥ 5 then the canonical map of 𝑆 has degree 4.

Proof. We denote by 𝑥0, 𝑥1, 𝑦 the coordinates of the weighted projective space containing
𝐶1 as in Definition 1.1, and by 𝑥0, 𝑥1, �̄� the analogous coordinates for 𝐶2. By the Kuenneth
formula the monomials

𝑚𝑎,𝑏 := 𝑥
⌈
𝑛𝑑1

2

⌉
−2−𝑎

0 𝑥

⌈
𝑛𝑑2

2

⌉
−2−𝑏

0 𝑥𝑎1 𝑥
𝑏
1

form a basis of eigenvectors for the action of the
(
𝜌1, 𝜌

𝑘
2
)
of𝐻 on𝐻0 (𝐶1 ×𝐶2, 𝐾𝐶1×𝐶2 ) with

respective eigenvalues 𝑒 (𝑎+1+𝑘 (𝑏+1) ) 2𝜋𝑖
𝑛 . So a basis of 𝐻0 (𝑆, 𝐾𝑆) is given by the monomials{

𝑚𝑎,𝑏 |𝑛 divides 𝑎 + 1 + 𝑘 (𝑏 + 1)
}

(2.1)

(1) Pulling back𝐻0 (𝑆,𝐾𝑆) to𝐶1 ×𝐶2 we obtain a linear system Γ defined by the vector
subspace 𝑉 ⊂ 𝐻0 (𝐶1 × 𝐶2, 𝐾𝐶1×𝐶2 ) generated by the monomials 𝑚𝑎,𝑏 in (2.1).
We claim that if both 𝑑 𝑗 are at least 3, then the base locus of Γ is finite.
We first note that the divisor defined by each𝑚𝑎,𝑏 on𝐶1 ×𝐶2 is a linear combination
of the 4 divisors 𝑥0 = 0, 𝑥0 = 0, 𝑥1 = 0, 𝑥1 = 0. Then the base locus of Γ is contained
in the union of these 4 divisors.
We show that the intersection of the base locus of Γwith 𝑥1 = 0 is finite. It suffices to
prove that there is a monomial in𝑉 of the form𝑚0,𝑏. In other words, that there is an
integer 0 ≤ 𝑏 ≤

⌈
𝑛𝑑2

2

⌉
− 2 so that 𝑛 divides 1 + 𝑘 (𝑏 + 1), which is equivalent to ask

that the remainder class of 𝑏module 𝑛 is the unique class solving the corresponding
congruence. Since 𝑑2 ≥ 3,

⌈
𝑛𝑑2

2

⌉
− 2 ≥ 𝑛 − 1 and therefore we can find a 𝑏 in our

range for any such a class, giving a monomial 𝑚0,𝑏 in 𝑉 .
A similar argument show that the intersection of the base locus of Γ with each of
the other three divisors 𝑥0 = 0, 𝑥0 = 0, 𝑥1 = 0 is finite, by showing the existence of a
monomial in𝑉 of respective type 𝑚⌈

𝑛𝑑1
2

⌉
−2,𝑏

, 𝑚
𝑎,

⌈
𝑛𝑑2

2

⌉
−2

and 𝑚𝑎,0. This concludes

the proof of the claim.
Since the base locus of Γ is finite, the base locus of |𝐾𝑋 | is finite too whereas the
base locus of |𝐾𝑆 | may contain some irreducible curves, all exceptional for the map
𝑆 → 𝑋 , the minimal resolution of the singularities of 𝑋 . In particular there is no
(−1)-curve in the base locus of |𝐾𝑆 |. But a (−1)-curve on a surface 𝑆 is always in
the base locus of |𝐾𝑆 |! So 𝑆 is a minimal surface, in the sense that it does not contain
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(−1)-curve. Since the canonical system is not empty, then 𝑆 minimal implies that
𝐾𝑆 is nef.

(2) If 𝑑1 ≥ 4, 𝑑2 ≥ 5, arguing as above, we can find a monomial of the form 𝑚0,𝑏 in 𝑉
such that also 𝑚0,𝑏+𝑛, 𝑚𝑛,𝑏, 𝑚𝑛,𝑏+𝑛 belong to 𝑉 . These 4 monomials map 𝐶1 ×𝐶2
as 𝑥𝑛0 𝑥

𝑛
0 , 𝑥

𝑛
0 𝑥
𝑛
1 , 𝑥

𝑛
1 𝑥
𝑛
0 , 𝑥

𝑛
1 𝑥
𝑛
1 onto a smooth quadric𝑄 ⊂ P3. Then the canonical image

of 𝑆, dominating 𝑄, is a surface as well.
Choose a general point 𝑞 ∈ 𝑄. Its preimage in𝐶1 ×𝐶2 has cardinality (2𝑛)2, giving
4𝑛 points of 𝑆. The group 𝐾 acts freely on them, giving 𝑛 smooth points 𝑞1, . . . , 𝑞𝑛
of 𝑋/𝐾 . We know by Lemma 2.2 that the canonical map of 𝑋 factors through 𝑋/𝐾;
we finish the proof by showing that it separates the 𝑞 𝑗 .
The automorphism (𝜌1, 1) of 𝐶1 × 𝐶2 commutes with 𝐻, so it defines an auto-
morphism 𝜌𝑋 of 𝑋 . This automorphism commutes with 𝐾 , so inducing a further
automorphism 𝜌𝐾 of order 𝑛 of 𝑋/𝐾 . A straightforward direct computation shows
that 𝜌𝐾 permutes the 𝑞 𝑗 cyclically.
Now choose a monomial in 𝑉 of the form 𝑚1,𝑐. Then the action of (𝜌1, 1) on the
vector subspace of𝑉 generated by𝑚1,𝑐, 𝑚0,𝑏, 𝑚0,𝑏+𝑛, 𝑚𝑛,𝑏, 𝑚𝑛,𝑏+𝑛 has exactly two
distinct eigenvalues, which differ by a primitive 𝑛−th root of the unity. This implies
that the canonical map of 𝑋 separates the 𝑞 𝑗 .

Remark 2.4. The statement of Theorem 2.3 is not meant to be sharp. For example, essen-
tially the same proof shows that part (2) extends to the case 𝑑1 = 3 with the possible
exception 𝑛 = 2.

Remark 2.5. The proof of Theorem 2.3, part (1) shows that the canonical system of these
surfaces has no fixed components.

In fact, it contains all the elements necessary to explicitly compute the base locus of
the canonical system, by describing its pull-back on 𝐶1 × 𝐶2, the base locus of the linear
system Γ.

Consider for example the first case 𝑛 = 2, 𝑑1 = 𝑑2 = 3. In this case 𝑘 = 1. Then the
given basis of 𝐻0 (𝑆, 𝐾𝑆) is {𝑥0𝑥0, 𝑥1𝑥1}. This implies that the base locus of Γ is formed by
8 simple points, four defined by 𝑥0 = 𝑥1 = 0 and four defined by 𝑥0 = 𝑥1 = 0. The involution
defining 𝑆 as quotient of𝐶1 ×𝐶2 acts on these eight points freely, so 𝐻0 (𝑆, 𝐾𝑆) has exactly
four simple base points, their images.

By Proposition 1.4 this involution fixes exactly 4 points, those at 𝑥1 = 𝑥1 = 0, inducing
4 singular points of type 𝐴1 on 𝑆. The standard formulas from [5] give 𝐾2

𝑆
= 4 and 𝑝𝑔 (𝑆) =

𝑞(𝑆) = 2, confirming that the canonical system is a pencil with 4 base points.



Some surfaces with canonical map of degree 4 7

3. Unbounded sequences of Wiman Product-Quotient surfaces

In this section we only consider Wiman product-quotient surfaces of type 𝑛, 𝑑1, 𝑑2 with
both 𝑑1, 𝑑2 even.

Identifying a point of 𝑋 with an orbit of the action of 𝐻 on𝐶1 ×𝐶2, the singular points
of 𝑋 correspond to the orbits of cardinality smaller than 𝑛.

By Proposition 1.4 the orbits of the rotation of a generalized Wiman curve of type 𝑛, 𝑑
with 𝑑 even are all of order 𝑛 with 4 exceptions, 4 fixed points. So 𝑋 has 16 singular points.
A straightforward computation shows that 8 are of type 𝑘

𝑛
and 8 of type −𝑘

𝑛
.

We consider the invariant 𝛾 of the basket introduced in [6, Section 4]: it vanishes by
[6, Proposition 4.4] since the basket contains as many points of type 𝑘

𝑛
as of type −𝑘

𝑛
.

By [6, Proposition 4.1] 𝐾2
𝑆
= 8𝜒 (O𝑆) − 2𝛾 − 𝑙 = 8𝜒 (O𝑆) − 𝑙 where 𝑙 is the number of

exceptional curves of 𝑆 → 𝑋 .
Therefore

8 − `(𝑆) =
8𝜒(O𝑆) − 𝐾2

𝑆

𝜒(O𝑆)
=

𝑙

𝜒(O𝑆)
=

𝑙(
𝑛

𝑑1
2 −2

) (
𝑛

𝑑2
2 −2

)
𝑛

+ 4
(
1 − 1

𝑛

)
Writing the continued function of 𝑛

𝑘

𝑛

𝑘
= 𝑏1 −

1

𝑏2 −
1

𝑏3 − . . .

then ([15, Section 3]) the number of irreducible components of the resolution above
two singular points of respective type 𝑘

𝑛
and −𝑘

𝑛
equals 1 +∑(𝑏 𝑗 − 1), so

8 − `(𝑆) =
8
(
1 +∑(𝑏 𝑗 − 1)

)(
𝑛

𝑑1
2 −2

) (
𝑛

𝑑2
2 −2

)
𝑛

+ 4
(
1 − 1

𝑛

) ≈𝑛→∞
32
𝑑1𝑑2

1 +∑(𝑏 𝑗 − 1)
𝑛

(3.1)

In the simplest case 𝑘 = 1 we obtain 1+∑(𝑏 𝑗−1)
𝑛

= 1+𝑛−1
𝑛

= 1 and then

Theorem 3.1. There is an unbounded sequence 𝑆𝑛 of surfaces that have canonical map of
degree 4 such that

lim
𝑛→∞

` (𝑆𝑛) = 8
(
1 − 1

𝑚

)
for all positive integers 𝑚 ≥ 6 that are not prime numbers.

Proof. Write 𝑚 = 𝑎𝑏 with 𝑎 ≥ 2, 𝑏 ≥ 3 and pick a sequence of Wiman product-quotient
surfaces 𝑆𝑛 of type 𝑛, 2𝑎, 2𝑏 and shift 1.

We are in the assumptions of Theorem 2.3, part (2) (𝑑1 = 2𝑎 ≥ 4, 𝑑2 = 2𝑏 ≥ 6 > 5) so
the canonical map of 𝑆𝑛 has degree 4.
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Finally, by (3.1)

lim
𝑛→∞

` (𝑆𝑛) = 8 − 32
𝑑1𝑑2

1 +∑(𝑏 𝑗 − 1)
𝑛

= 8 − 8
𝑎𝑏

1 + 𝑛 − 1
𝑛

= 8
(
1 − 1

𝑎𝑏

)
.

4. Further questions and possible generalizations

We have studied some natural generalizations of this construction giving surfaces with
canonical map of degree 4. Unfortunately they do not lead to a substantial improvement of
our main result, so we have decided not to include them in this work. However, we mention
them here for completeness.

We obtain in fact similar results for Wiman product quotient surfaces where the 𝑑 𝑗 are
not both even. One can also consider hyperelliptic curves of equation 𝑦2 = 𝑥0𝑥1 𝑓 (𝑥𝑛0 , 𝑥

𝑛
1 ).

All these generalizations lead to surfaces with canonical map of degree 4 and slope in the
same range

[
6 + 2

3 , 8
]
.

The other possible generalization is by considering shifts other that 1. More precisely,
consider a sequence of positive integers 𝑘𝑛, with 1 ≤ 𝑘𝑛 ≤ 𝑛 − 1, gcd(𝑘𝑛, 𝑛) = 1. Then a
sequence 𝑆𝑛 of Wiman product-quotient surfaces of type 𝑛, 2𝑎, 2𝑏 and shift 𝑘𝑛 has

lim
𝑛→∞

`(𝑆𝑛) = 8 − 8
1
𝑚

lim
𝑛→∞

𝜎

(
𝑘𝑛

𝑛

)
.

where
𝜎

(
𝑘

𝑛

)
:=

1 +∑(𝑏 𝑗 − 1)
𝑛

.

Obviously 𝜎
(
𝑘
𝑛

)
> 0, 𝜎

(
1
𝑛

)
= 1. It is known [16, Lemma 3.3] that 𝜎 ≤ 1. An inde-

pendent proof has been sent us by J. Stevens.
Question: What are the possible limits of

{
𝜎

(
𝑘
𝑛

)}
⊂ [0, 1] for sequences of rational

numbers 𝑘
𝑛

with unbounded denominators?
Note lim𝑛→∞ 𝜎

(
𝑚

𝑚𝑛+1
)
= 1
𝑚

. We could not obtain any sequence with limit neither zero
nor of the form 1

𝑚
. If there were more possible limits, this construction would improve our

main result.
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