Some surfaces with canonical map of degree 4

Federico Fallucca and Roberto Pignatelli

Abstract

In this note we construct unbounded families of minimal surfaces of general type whose canonical map has a degree of 4 such that the limits of the slopes K^{2} / χ assume countably many different values in the closed interval $\left[6+\frac{2}{3}, 8\right]$.

Introduction

In this paper a surface is a compact complex manifold of dimension 2 . An unbounded family of surfaces is a sequence of surfaces S_{n} with an arbitrarily large Euler characteristic $\chi\left(O_{S_{n}}\right)$. More precisely, our unbounded families are sequence of surfaces S_{n} such that $\lim _{n \rightarrow \infty} \chi\left(O_{S_{n}}\right)=+\infty$.

It is well known since the pioneering work of Beauville [3] and a Theorem of Xiao Gang [17] that the degree of the canonical map of a surface S, if we assume a large enough Euler characteristic, is bounded from above by 8 . Recall that the degree of the canonical map is a birational invariant, so we can without loss of generality assume that S is minimal.

We address the reader to the beautiful survey of M. Mendes Lopes and R. Pardini [14] on the subject. We read from there, among other things, examples of unbounded sequences of minimal surfaces whose canonical map has a degree of δ for every $\delta \in\{2,4,6,8\}$.

Recall that the slope μ of a minimal surface S is defined as $\mu(S):=\frac{K_{S}^{2}}{\chi\left(O_{S}\right)}$. By the Bogomolov-Miyaoka-Yau inequality $\mu(S) \leq 9$. By the above mentioned results it easily follows that for any unbounded family S_{n} of minimal surfaces whose canonical map has a degree of $\delta, \lim \inf \mu\left(S_{n}\right) \geq \delta$. This raises the question of investigating, for all δ, the set of the accumulation points of the slopes of unbounded families of minimal surfaces whose canonical map has a degree of δ. Compare [14]*Question 5.6.

We know only three constructions of unbounded families of minimal surfaces whose canonical map has a degree of 4 .

The first, mentioned in [14], is obtained by taking the product of two hyperelliptic curves. All these surfaces have slope 8 .

The second, see [4, Remark 3], is a construction as Galois cover of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with Galois $\operatorname{group}(\mathbb{Z} / 2 \mathbb{Z})^{3}$; they also have $\lim \mu\left(S_{n}\right)$ equal to 8 .

The last, constructed by F. J. Gallego and G. P. Purnaprajna, give unbounded families with $\lim \mu\left(S_{n}\right)$ equal either to 8 or to 4 , see the last column of [11, Table at page 5491].

Inspired by certain constructions of $K 3$ surfaces in [10], we show that $\lim \mu\left(S_{n}\right)$, when S_{n} is an unbounded families of minimal surfaces whose canonical map has a degree of 4, may assume infinitely many different values. More precisely

Theorem. There are countably many unbounded sequences S_{n} of surfaces of general type that have canonical map of degree 4 such that $\lim _{n \rightarrow \infty} \mu\left(S_{n}\right)$ assumes pairwise distinct values in the range $\left[6+\frac{2}{3}, 8\right]$.

All these surfaces are product-quotient surfaces. The product-quotient surfaces have been introduced by the second author, I. Bauer, F. Catanese and F. Grunewald in [2] (compare also [7], [1], [5]). Their canonical map was studied, in the special case of the surfaces isogenous to a product, in [8]. To our knowledge they were used first for constructing surfaces with canonical map of high degree in [12].

Notation

For each real number z, let $\lceil z\rceil$ be the smallest integer greater or equal than z.
For each pair of integers $z, n \in \mathbb{N}$ we denote by $[z]_{n}$ the unique integer, $0 \leq[z]_{n} \leq n-1$, such that $z-[z]_{n}$ is divisible by n.

We say that a point of a complex analytic variety is a singular point of type $\frac{p}{q}$, with $p \in$ $\mathbb{Z} \backslash\{0\}, q \in \mathbb{N} \backslash\{0\}, \operatorname{gcd}(p, q)=1$, if one of its neighbourhoods is analytically isomorphic to the quotient of a neighbourhood of the origin of \mathbb{C}^{2} by the cyclic group generated by the automorphism $(x, y) \mapsto\left(e^{\frac{2 \pi i}{q}} x, e^{p \frac{2 \pi i}{q}} y\right)$. These singularities are most commonly denoted as cyclic quotient singularities of type $\frac{1}{q}(1, r)$ in the literature, where r is the reminder of the division of p by q.

We say that a variety has basket of singularities $a_{1} \frac{p_{1}}{q_{1}}+a_{2} \frac{p_{2}}{q_{2}}+\cdots+a_{r} \frac{p_{r}}{q_{r}}$ if its singular locus is finite and can be partitioned in r subsets S_{1}, \ldots, S_{r} of respective cardinality a_{1}, \ldots, a_{r} such that each point in S_{j} is a singularity of type $\frac{p_{j}}{q_{j}}$.

1. Generalized Wiman Curves

By a classical result of Harvey and Wiman $([13,18])$ an automorphism of a curve of genus g at least 2 has order at most $4 g+2$. Moreover, there is exactly one curve of genus g with an automorphism of order $4 g+2$ for each integer $g \geq 2$, usually referred in literature as the Wiman curve of genus g.

Definition 1.1 (Generalized Wiman curves). Consider two positive integers $n, d \geq 1$.
A generalized Wiman curve of type n, d is a curve in the weighted projective space $\mathbb{P}\left(1,1,\left\lceil\frac{n d}{2}\right\rceil\right)$ defined by an equation of the form

$$
y^{2}=x_{0}^{[n d]_{2}} f\left(x_{0}^{n}, x_{1}^{n}\right)
$$

where f is a homogenous polynomial of degree d in the two variables x_{0}, x_{1} without multiple roots such that neither x_{0} nor x_{1} divide f.

Remark 1.2. The assumptions on the polynomial f ensure that any generalized Wiman curve is smooth.

By adjunction a generalized Wiman curve C of type n, d has genus $g=\left\lceil\frac{n d}{2}\right\rceil-1$. In fact a basis of $H^{0}\left(C, K_{C}\right)$ is given by the monomials

$$
\begin{equation*}
x_{0}^{\left\lceil\frac{n d}{2}\right\rceil-2}, x_{0}^{\left\lceil\frac{n d}{2}\right\rceil-3} x_{1}, \ldots, x_{0} x_{1}^{\left\lceil\frac{n d}{2}\right\rceil-3}, x_{1}^{\left\lceil\frac{n d}{2}\right\rceil-2} \tag{1.1}
\end{equation*}
$$

A generalized Wiman curve of type n, d has the following two natural commuting automorphisms

$$
\iota:\left(x_{0}, x_{1}, y\right) \mapsto\left(x_{0}, x_{1},-y\right) \quad \rho:\left(x_{0}, x_{1}, y\right) \mapsto\left(x_{0}, e^{\frac{2 \pi i}{n}} x_{1}, y\right)
$$

of respective order 2 and n. This shows
(1) all generalized Wiman curves are hyperelliptic, ι being their hyperelliptic involution;
(2) a generalized Wiman curve of type $2 g+1,1$ is the Wiman curve of genus g.

Since ι is the hyperelliptic involution, ι acts on $H^{0}\left(C, K_{C}\right)$ as the multiplication by -1 . The points fixed by ι are the $2 g+2$ points of the divisor $y=0$.

Definition 1.3. We will say that ρ is the rotation of C.
We conclude this section by studying the action of the rotation.
Proposition 1.4. The action of ρ on the locus $x_{0} x_{1} \neq 0$ has all orbits of order n.
The divisor $x_{1}=0$ is given by two points, both fixed by ρ.
If both n and d are odd, then the divisor $x_{0}=0$ is given by one single point, fixed by ρ. Else the divisor $x_{0}=0$ is given by two distinct points, fixed by ρ if d is even and exchanged by ρ if d is odd.

The monomials in (1.1) are eigenvalues for the induced action of ρ on $H^{0}\left(C, K_{C}\right)$. More precisely ρ acts on them as

$$
\begin{equation*}
x_{0}^{\left\lceil\frac{n d}{2}\right\rceil-2-a} x_{1}^{a} \mapsto e^{(a+1) \frac{2 \pi i}{n}} x_{0}^{\left\lceil\frac{n d}{2}\right\rceil-2-a} x_{1}^{a} \tag{1.2}
\end{equation*}
$$

Proof. The rotation lifts the automorphism of $\mathbb{P}^{1}=C / \iota$ acting as $\left(x_{0}, x_{1}\right) \mapsto\left(x_{0}, e^{\frac{2 \pi i}{n}} x_{1}\right)$, which fixes only the two points $x_{0} x_{1}=0$, so the analogous statement holds for ρ.

By the definition of f the point $\left(x_{0}, x_{1}\right)=(0,1)$ is a branching point of the hyperelliptic $2: 1$ map $C \rightarrow \mathbb{P}^{1}$ if and only if both n and d are odd, in which case the divisor $x_{0}=0$ in C is a single (double) point, that is therefore fixed by ρ. Else, if $n d$ is even, $x_{0}=0$ is formed by two distinct points with homogeneous coordinates $\left(x_{0}, x_{1}, y\right)=\left(0,1, \pm \bar{u}_{0}\right)$ for some $\bar{u}_{0} \neq 0$. These two points are either fixed or exchanged by ρ. By the properties of the
weighted projective space they are fixed by ρ if and only if $\left(e^{-\frac{2 \pi i}{n}}\right)^{\frac{n d}{2}}=1$. We conclude the analysis of the divisor $x_{0}=0$ by observing that the last equation is verified if and only if d is even.

Since the point $\left(x_{0}, x_{1}\right)=(1,0)$ is not a branching point of the hyperelliptic map, the divisor $x_{1}=0$ is made by two distinct points with coordinates $\left(x_{0}, x_{1}, y\right)=\left(1,0, \pm \bar{u}_{1}\right)$ for some $\bar{u}_{1} \neq 0$, both obviously fixed by ρ.

The function $z:=x_{1} / x_{0}$ is a local coordinate in both of then, on which ρ acts as $z \mapsto$ $e^{\frac{2 \pi i}{n}} z$. The adjunction formula maps a monomial $x_{0}^{\left\lceil\frac{n d}{2}\right\rceil-2-a} x_{1}^{a}$ to the form that locally restricts to $z^{a} d z$ and therefore ρ acts on it as the multiplication by $e^{(a+1) \frac{2 \pi i}{n}}$.

2. Wiman product-quotient surfaces

Definition 2.1. For all integers n, d_{1}, d_{2} and for all $1 \leq k \leq n-1$ with $\operatorname{gcd}(k, n)=1$ we define a Wiman product-quotient surface of type n, d_{1}, d_{2} with shift k to be the minimal resolution S of the singularities of its quotient model $X:=\left(C_{1} \times C_{2}\right) / H$ where

- $C_{j}, j=1,2$ is a generalized Wiman curve of type n, d_{j};
- $H \subset \operatorname{Aut}\left(C_{1} \times C_{2}\right)$ is the cyclic subgroup of order n generated by the automorphism

$$
(x, y) \mapsto\left(\rho_{1} x, \rho_{2}^{k} y\right)
$$

where ρ_{j} is the rotation of C_{j}.
Denote the hyperelliptic involution of C_{j} by ι_{j}. Then $\operatorname{Aut}\left(C_{1} \times C_{2}\right)$ contains a subgroup of order 4 generated by $\left(\iota_{1}, 1\right)$ and $\left(1, \iota_{2}\right)$. The corresponding quotient of $C_{1} \times C_{2}$ is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Since this group commutes with H and it intersects H trivially, it defines a subgroup $K \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ of $\operatorname{Aut}(X)$. Note that X / K is dominated by $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and therefore it is rational.

Lemma 2.2. The canonical map of S factors through the rational surface X / K.
Proof. By the Kuenneth formula

$$
H^{0}\left(C_{1} \times C_{2}, K_{C_{1} \times C_{2}}\right) \cong H^{0}\left(C_{1}, K_{C_{1}}\right) \otimes H^{0}\left(C_{2}, K_{C_{2}}\right)
$$

and then both involutions $\left(\iota_{1}, 1\right)$ and $\left(1, \iota_{2}\right)$ act on $H^{0}\left(C_{1} \times C_{2}, K_{C_{1} \times C_{2}}\right)$ as the multiplication by -1 . Since by Freitag Theorem [9, Satz 1] the pull-back map sends $H^{0}\left(S, K_{S}\right)=$ $H^{0}\left(X, K_{X}\right)$ isomorphically onto the invariant subspace $H^{0}\left(C_{1} \times C_{2}, K_{C_{1} \times C_{2}}\right)^{H}$, it follows that all elements of K act on $H^{0}\left(S, K_{S}\right)=H^{0}\left(X, K_{X}\right)$ as a multiple of the identity.

This implies that $H^{0}\left(S, K_{S}\right)$ cannot separate two points in the same orbit by the action of K.

In the "degenerate" case $n=1, S=X$ is the product of the two hyperelliptic curves C_{1} and C_{2}. Assuming $d_{1}, d_{2} \geq 5$ (to have genera at least 2) we find an unbounded family of surfaces with canonical map of degree 4 as those mentioned in [14].

The degree of the canonical map remains in fact 4 also for bigger n.
Theorem 2.3. Let S be a Wiman product-quotient surface of type n, d_{1}, d_{2} and assume $n \geq 2$.
(1) If $d_{1}, d_{2} \geq 3$, then K_{S} is nef.
(2) If $d_{1} \geq 4, d_{2} \geq 5$ then the canonical map of S has degree 4 .

Proof. We denote by x_{0}, x_{1}, y the coordinates of the weighted projective space containing C_{1} as in Definition 1.1, and by $\bar{x}_{0}, \bar{x}_{1}, \bar{y}$ the analogous coordinates for C_{2}. By the Kuenneth formula the monomials

$$
m_{a, b}:=x_{0}^{\left\lceil\frac{n d_{1}}{2}\right\rceil-2-a} \bar{x}_{0}^{\left\lceil\frac{n d_{2}}{2}\right\rceil-2-b} x_{1}^{a} \bar{x}_{1}^{b}
$$

form a basis of eigenvectors for the action of the $\left(\rho_{1}, \rho_{2}^{k}\right)$ of H on $H^{0}\left(C_{1} \times C_{2}, K_{C_{1} \times C_{2}}\right)$ with respective eigenvalues $e^{(a+1+k(b+1)) \frac{2 \pi i}{n}}$. So a basis of $H^{0}\left(S, K_{S}\right)$ is given by the monomials

$$
\begin{equation*}
\left\{m_{a, b} \mid n \text { divides } a+1+k(b+1)\right\} \tag{2.1}
\end{equation*}
$$

(1) Pulling back $H^{0}\left(S, K_{S}\right)$ to $C_{1} \times C_{2}$ we obtain a linear system Γ defined by the vector subspace $V \subset H^{0}\left(C_{1} \times C_{2}, K_{C_{1} \times C_{2}}\right)$ generated by the monomials $m_{a, b}$ in (2.1). We claim that if both d_{j} are at least 3 , then the base locus of Γ is finite.
We first note that the divisor defined by each $m_{a, b}$ on $C_{1} \times C_{2}$ is a linear combination of the 4 divisors $x_{0}=0, \bar{x}_{0}=0, x_{1}=0, \bar{x}_{1}=0$. Then the base locus of Γ is contained in the union of these 4 divisors.
We show that the intersection of the base locus of Γ with $x_{1}=0$ is finite. It suffices to prove that there is a monomial in V of the form $m_{0, b}$. In other words, that there is an integer $0 \leq b \leq\left\lceil\frac{n d_{2}}{2}\right\rceil-2$ so that n divides $1+k(b+1)$, which is equivalent to ask that the remainder class of b module n is the unique class solving the corresponding congruence. Since $d_{2} \geq 3,\left\lceil\frac{n d_{2}}{2}\right\rceil-2 \geq n-1$ and therefore we can find a b in our range for any such a class, giving a monomial $m_{0, b}$ in V.
A similar argument show that the intersection of the base locus of Γ with each of the other three divisors $x_{0}=0, \bar{x}_{0}=0, \bar{x}_{1}=0$ is finite, by showing the existence of a monomial in V of respective type $m_{\left[\frac{n d_{1}}{2}\right]_{-2, b}}, m_{a,\left[\frac{n d_{2}}{2}\right]_{-2}}$ and $m_{a, 0}$. This concludes the proof of the claim.
Since the base locus of Γ is finite, the base locus of $\left|K_{X}\right|$ is finite too whereas the base locus of $\left|K_{S}\right|$ may contain some irreducible curves, all exceptional for the map $S \rightarrow X$, the minimal resolution of the singularities of X. In particular there is no (-1)-curve in the base locus of $\left|K_{S}\right|$. But a (-1)-curve on a surface S is always in the base locus of $\left|K_{S}\right|$! So S is a minimal surface, in the sense that it does not contain
(-1)-curve. Since the canonical system is not empty, then S minimal implies that K_{S} is nef.
(2) If $d_{1} \geq 4, d_{2} \geq 5$, arguing as above, we can find a monomial of the form $m_{0, b}$ in V such that also $m_{0, b+n}, m_{n, b}, m_{n, b+n}$ belong to V. These 4 monomials map $C_{1} \times C_{2}$ as $x_{0}^{n} \bar{x}_{0}^{n}, x_{0}^{n} \bar{x}_{1}^{n}, x_{1}^{n} \bar{x}_{0}^{n}, x_{1}^{n} \bar{x}_{1}^{n}$ onto a smooth quadric $Q \subset \mathbb{P}^{3}$. Then the canonical image of S, dominating Q, is a surface as well.
Choose a general point $q \in Q$. Its preimage in $C_{1} \times C_{2}$ has cardinality $(2 n)^{2}$, giving $4 n$ points of S. The group K acts freely on them, giving n smooth points q_{1}, \ldots, q_{n} of X / K. We know by Lemma 2.2 that the canonical map of X factors through X / K; we finish the proof by showing that it separates the q_{j}.
The automorphism $\left(\rho_{1}, 1\right)$ of $C_{1} \times C_{2}$ commutes with H, so it defines an automorphism ρ_{X} of X. This automorphism commutes with K, so inducing a further automorphism ρ_{K} of order n of X / K. A straightforward direct computation shows that ρ_{K} permutes the q_{j} cyclically.
Now choose a monomial in V of the form $m_{1, c}$. Then the action of $\left(\rho_{1}, 1\right)$ on the vector subspace of V generated by $m_{1, c}, m_{0, b}, m_{0, b+n}, m_{n, b}, m_{n, b+n}$ has exactly two distinct eigenvalues, which differ by a primitive n-th root of the unity. This implies that the canonical map of X separates the q_{j}.

Remark 2.4. The statement of Theorem 2.3 is not meant to be sharp. For example, essentially the same proof shows that part (2) extends to the case $d_{1}=3$ with the possible exception $n=2$.

Remark 2.5. The proof of Theorem 2.3, part (1) shows that the canonical system of these surfaces has no fixed components.

In fact, it contains all the elements necessary to explicitly compute the base locus of the canonical system, by describing its pull-back on $C_{1} \times C_{2}$, the base locus of the linear system Γ.

Consider for example the first case $n=2, d_{1}=d_{2}=3$. In this case $k=1$. Then the given basis of $H^{0}\left(S, K_{S}\right)$ is $\left\{x_{0} \bar{x}_{0}, x_{1} \bar{x}_{1}\right\}$. This implies that the base locus of Γ is formed by 8 simple points, four defined by $x_{0}=\bar{x}_{1}=0$ and four defined by $\bar{x}_{0}=x_{1}=0$. The involution defining S as quotient of $C_{1} \times C_{2}$ acts on these eight points freely, so $H^{0}\left(S, K_{S}\right)$ has exactly four simple base points, their images.

By Proposition 1.4 this involution fixes exactly 4 points, those at $x_{1}=\bar{x}_{1}=0$, inducing 4 singular points of type A_{1} on S. The standard formulas from [5] give $K_{S}^{2}=4$ and $p_{g}(S)=$ $q(S)=2$, confirming that the canonical system is a pencil with 4 base points.

3. Unbounded sequences of Wiman Product-Quotient surfaces

In this section we only consider Wiman product-quotient surfaces of type n, d_{1}, d_{2} with both d_{1}, d_{2} even.

Identifying a point of X with an orbit of the action of H on $C_{1} \times C_{2}$, the singular points of X correspond to the orbits of cardinality smaller than n.

By Proposition 1.4 the orbits of the rotation of a generalized Wiman curve of type n, d with d even are all of order n with 4 exceptions, 4 fixed points. So X has 16 singular points. A straightforward computation shows that 8 are of type $\frac{k}{n}$ and 8 of type $\frac{-k}{n}$.

We consider the invariant γ of the basket introduced in [6, Section 4]: it vanishes by [6, Proposition 4.4] since the basket contains as many points of type $\frac{k}{n}$ as of type $\frac{-k}{n}$. By [6, Proposition 4.1] $K_{S}^{2}=8 \chi\left(O_{S}\right)-2 \gamma-l=8 \chi\left(O_{S}\right)-l$ where l is the number of exceptional curves of $S \rightarrow X$.

Therefore

$$
8-\mu(S)=\frac{8 \chi\left(O_{S}\right)-K_{S}^{2}}{\chi\left(O_{S}\right)}=\frac{l}{\chi\left(O_{S}\right)}=\frac{l}{\frac{\left(n \frac{d_{1}}{2}-2\right)\left(n \frac{d_{2}}{2}-2\right)}{n}+4\left(1-\frac{1}{n}\right)}
$$

Writing the continued function of $\frac{n}{k}$

$$
\frac{n}{k}=b_{1}-\frac{1}{b_{2}-\frac{1}{b_{3}-\ldots}}
$$

then ([15, Section 3]) the number of irreducible components of the resolution above two singular points of respective type $\frac{k}{n}$ and $\frac{-k}{n}$ equals $1+\sum\left(b_{j}-1\right)$, so

$$
\begin{equation*}
8-\mu(S)=\frac{8\left(1+\sum\left(b_{j}-1\right)\right)}{\frac{\left(n \frac{d_{1}}{2}-2\right)\left(n \frac{d_{2}}{2}-2\right)}{n}+4\left(1-\frac{1}{n}\right)} \approx_{n \rightarrow \infty} \frac{32}{d_{1} d_{2}} \frac{1+\sum\left(b_{j}-1\right)}{n} \tag{3.1}
\end{equation*}
$$

In the simplest case $k=1$ we obtain $\frac{1+\sum\left(b_{j}-1\right)}{n}=\frac{1+n-1}{n}=1$ and then
Theorem 3.1. There is an unbounded sequence S_{n} of surfaces that have canonical map of degree 4 such that

$$
\lim _{n \rightarrow \infty} \mu\left(S_{n}\right)=8\left(1-\frac{1}{m}\right)
$$

for all positive integers $m \geq 6$ that are not prime numbers.
Proof. Write $m=a b$ with $a \geq 2, b \geq 3$ and pick a sequence of Wiman product-quotient surfaces S_{n} of type $n, 2 a, 2 b$ and shift 1 .

We are in the assumptions of Theorem 2.3, part (2) ($d_{1}=2 a \geq 4, d_{2}=2 b \geq 6>5$) so the canonical map of S_{n} has degree 4.

Finally, by (3.1)

$$
\lim _{n \rightarrow \infty} \mu\left(S_{n}\right)=8-\frac{32}{d_{1} d_{2}} \frac{1+\sum\left(b_{j}-1\right)}{n}=8-\frac{8}{a b} \frac{1+n-1}{n}=8\left(1-\frac{1}{a b}\right)
$$

4. Further questions and possible generalizations

We have studied some natural generalizations of this construction giving surfaces with canonical map of degree 4 . Unfortunately they do not lead to a substantial improvement of our main result, so we have decided not to include them in this work. However, we mention them here for completeness.

We obtain in fact similar results for Wiman product quotient surfaces where the d_{j} are not both even. One can also consider hyperelliptic curves of equation $y^{2}=x_{0} x_{1} f\left(x_{0}^{n}, x_{1}^{n}\right)$. All these generalizations lead to surfaces with canonical map of degree 4 and slope in the same range $\left[6+\frac{2}{3}, 8\right]$.

The other possible generalization is by considering shifts other that 1 . More precisely, consider a sequence of positive integers k_{n}, with $1 \leq k_{n} \leq n-1, \operatorname{gcd}\left(k_{n}, n\right)=1$. Then a sequence S_{n} of Wiman product-quotient surfaces of type $n, 2 a, 2 b$ and shift k_{n} has

$$
\lim _{n \rightarrow \infty} \mu\left(S_{n}\right)=8-8 \frac{1}{m} \lim _{n \rightarrow \infty} \sigma\left(\frac{k_{n}}{n}\right) .
$$

where

$$
\sigma\left(\frac{k}{n}\right):=\frac{1+\sum\left(b_{j}-1\right)}{n}
$$

Obviously $\sigma\left(\frac{k}{n}\right)>0, \sigma\left(\frac{1}{n}\right)=1$. It is known [16, Lemma 3.3] that $\sigma \leq 1$. An independent proof has been sent us by J. Stevens.

Question: What are the possible limits of $\left\{\sigma\left(\frac{k}{n}\right)\right\} \subset[0,1]$ for sequences of rational numbers $\frac{k}{n}$ with unbounded denominators?

Note $\lim _{n \rightarrow \infty} \sigma\left(\frac{m}{m n+1}\right)=\frac{1}{m}$. We could not obtain any sequence with limit neither zero nor of the form $\frac{1}{m}$. If there were more possible limits, this construction would improve our main result.

Acknowledgements. This paper originated by several enlighting discussions of the second author with C . Gleißner and C . Rito on the idea of considering product-quotient surfaces $C_{1} \times C_{2} / G$ with a subgroup $H \subset G$ such that the canonical map of $C_{1} \times C_{2} / H$ factors through $C_{1} \times C_{2} / G$. He thanks both of them heartily. We thank J. Stevens, S. Troncoso and the anonymous user "mathlove" on Stack Exchange for interesting discussions on the behaviour of the function σ, and N . Bin for pointing out a useful reference. The second author is indebted with M. Mendes Lopes and R. Pardini for sharing a preliminary version
of their inspiring survey. The second author thanks M. Penegini and F. Polizzi for inviting him to give a talk at the $8^{\text {th }}$ ECM in Portorose, where he presented a preliminary version of this result: the beautiful atmosphere and the clever questions posed there helped us in improving our results.

References

[1] I. C. Bauer, F. Catanese, Some new surfaces with $p_{g}=q=0$. In Univ. Torino, Turin, pp. 123142, 2004, MR 2112572
[2] I. C. Bauer, F. Catanese, F. Grunewald, R. Pignatelli, Quotients of products of curves, new surfaces with $p_{g}=0$ and their fundamental groups. Amer. J. Math., 134 (2012), no. 4, 9931049, MR 2956256
[3] A. Beauville, L'application canonique pour les surfaces de type général. Invent. Math. 55 (1979), no. 2, 121-140 MR 553705
[4] N. Bin, Some infinite sequences of canonical covers of degree 2. Adv. Geom. 21 (2021), no. 1, 143-148 MR 4203293
[5] I. C. Bauer, R. Pignatelli, The classification of minimal product-quotient surfaces with $p_{g}=0$. Math. Comp. 81 (2012), no. 280, 2389-2418 MR 2945163
[6] I. C., Bauer, R. Pignatelli, Product-quotient surfaces: new invariants and algorithms. Groups Geom. Dyn. 10 (2016), no. 1, 319-363 MR 3460339
[7] F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces. Amer. J. Math. 122 (2000), no. 1, 1-44 MR 1737256
[8] F. Catanese, On the canonical map of some surfaces isogenous to a product. In Contemp. Math., 712, pp. 33-57, Amer. Math. Soc., [Providence], RI, 2018, MR 3832398
[9] E. Freitag, Über die Struktur der Funktionenkörper zu hyperabelschen Gruppen. I. J. Reine Angew. Math. 247 (1971), 97-117 MR 281689
[10] A. Garbagnati, M. Penegini, K3 surfaces with a non-symplectic automorphism and productquotient surfaces with cyclic groups. Rev. Mat. Iberoam. 31 (2015), no. 4, 1277-1310 MR 3438390
[11] F. J. Gallego, B. P. Purnaprajna, Classification of quadruple Galois canonical covers. I. Trans. Amer. Math. Soc. 360 (2008), no. 10, 5489-5507 MR 2415082
[12] C. Gleissner, R. Pignatelli, C. RIto, New surfaces with canonical map of high degree. To appear on Commun. Anal. Geom., arXiv:1807.11854
[13] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford Ser. (2) $\mathbf{1 7}$ (1966), 86-97 MR 201629
[14] M. Mendes Lopes, R. Pardini, On the Degree of the Canonical Map of a Surface of General Type. In The Art of Doing Algebraic Geometry, Trends in Mathematics, Birkhäuser, Cham., 2023
[15] O. Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen). Math. Ann. 209 (1974), 211-248 MR 367276
[16] S. Troncoso, G. Urzua, Savage surfaces. J. Eur. Math. Soc., (2022) MR 1601854
[17] Xiao Gang, Algebraic surfaces with high canonical degree. Math. Ann. 274 (1986), no. 3, 473483 MR 842626
[18] A. Wiman, Über die hyperelliptichen Kurven und diejenigen vom Geschlecht $p=3$, welche eindeutige Transformationen in sich selbst zulassen. Bihang. Till. Kungl. Svenska VetenskapsAkademiens Handlingar 21 (1895), no. 1, 1-23

Federico Fallucca

Dipartimento di Matematica, Università di Trento, via Sommarive 14, I-38123 Trento, Italy; federico.fallucca@unitn.it

Roberto Pignatelli

Dipartimento di Matematica, Università di Trento, via Sommarive 14, I-38123 Trento, Italy; roberto.pignatelli@unitn.it

